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ON SYNTHESIS IN A DIFFERENTIAL GAME* 

N.N. EBASOVSKII 

The control problem is considered with minimization of the guaranteed 
result for a system described by an ordinary differential equation in 
the presence of uncontrolled noise. The concepts and formulation of the 
problem in /l/ are used. It is shown that, when forming the optimal 
control by the method of programmed stochastic synthesis /l-3/, the 
extremal shift at the accompanying point /l, 4/ can be reduced to extremal 
shift agianst the gradient of the appropriate function. This explains 
the connection between the programmed stochastic synthesis and the generalized 
Hamilton-Jacobi equation /5, 6/inthe theory of differential games. 

1. Formulation of the problem. Consider the system described by the differential 
equation 

I' = A (t) x + f (t, u, Y), u E P, L’ E Q, t, < t < 6 (1.1) 

Here, zz is the n-dimensional phase vector oftheobject, u is the r-dimensional control 
vector, v is the s-dimensional noise vector, A (t) is a continuous matrix function, f(t,u,v) 
is a continuous vector function, P and Q are compacta, and 

y = [,je,u(f. 2 [t]) p (&) + s x (t, u [tl, v [“]) dt 
(1.2) 

t. 

The functional which characteristizes the quality of the process in an interval !t,,@lC: 

[to, 61 is given. Here, s (& r) and x (t,u,o) are scalar continuous functions, a&r) satisfies 
a Lipschits condition and is convex with respect to x,and P(T)is the Bore1 measure in sets 
T c ho, @I. 

We consider motions r[t,[.]6]={z[t],t,,< t <6}, lying in a given bounded domain G of 
space {t, 5). Domain G is defined for t,<,<<ft, is closed, and satisfies the following 
condition /l, pp.37-42/. Given any initial position it*, z*) E G, every possible motion 
s[t,[-161 satisfies the inclusion {t,r[tl} EG for all t E It,, S]. The problem is to construct 
the optimal strategy d (.} = {u" (t, z, e), (t,r) E G, e> 01, which gives the minimum guaranteed 
result p" (t*, 5*). 

This strategy exists and by definition, satisfies the following condition /l, pp.67-81/. 
Given any number g> 0, a number s(c)'> 0 and a function &(c, E)> 0 exist such that the 
control law 

u = {u" (.)T a, A (ti}) (1.3) 
which forms the motion as a solution of the step-by-step differential equation 

X' ItI = A (t) 5 ItI $ f (t, U" (tiy x Iti], E), V [tI) (1.4) 
t, < t < ti,,, is* I * . -t k tl = t,, th.+1 = 6, x Et,! = 2* 

guarantees the inequality 7<p"(t,,x,)+ j, no matter what the measurable noise 

*pr~kl.~atem.~e~~.,SO,6,898-.902,19a6 
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v[t, I.1 6) = {v[tl E Q, t, <t< 61, providedthat e < e (i), a.<iY(j, E). Then, P = P' (t*, 4 is 
the least of the numbers p which satisfy the similar condition. 

2. Programmed stochastic extremum. We can assume without loss of generality that 
the Lipschits constant h with respect to x for the function o(t,x) and the measure p(T) in 
(1.2) satisfy in the domain G the conditions /l, p.380/ l,< 1, ~((It~,sl)-< 1. We can arrange 
for this by changing the scale of measuring y and without thereby distorting the problem. 
It can be shown /l, Chapter V/ that we have for pO(t,,x,) the equation 

P0 (t*? x*) = S"P B, B E B (t*, x*) (2.1) 

for the set B(t,,x,) of numbers fi given by 

B (t*, ?+) = {fi: whe @*, {% o), 4 p) > fl) (2.2) 

Here, an (n + I)-dimensional vector of the type {x, z~+~) = z = {zl, . . .,z,,z,,,~}, makes an 
appearance. The first n components of z form the vector z = {xl, . . ., xJ = {zl, . ., k). In 
(2.2), x = x*, Zn+r = 0. By A we denote the division A. {"i) of the interval [t,, @I by 
points rjr j = 1, . . ..k. TV = t,,~k+~ = 6, k is an integer. 

What we called in /l/ the progrannned extremum e(t,,z,, A, b) is given by 

e (t*, z*, A, B) = SUP {X (&G, z*, A {Tj), p, 1 (.))I + B 
11~(~)1141 

(2.3) 

Here, l (‘) = {I (T, w) = l [z, EL . . ., Ekl, t, < z < 6, 0 = {El> . -7 ;k)EQ) is an n-dimensional 
random vector function. It is defined in the auxiliary probability space (8, F~ p); Ej (i = 
1, . . ., k) are independent in aggregate random quantities, each of which is uniformly distributed 
inthehalf-interval O< Ej< 1. The quantity )I l(a)]\ is any suitable norm for I(.) in the 
direct product of spaces {[t,,,fil, BT, IL)@ {Q, F, P). 

For example, to be specific we take 

where 11 1 is the Euclidean norm of the vector 1. In (2.31, x is given by 

x @*, z** A {~j)~ BT .I(.)) = <s*.x*> + z*n+l + 
0 

(2.4) 

(2.5) 

Here, (.> denotes the scalar product of vectors, and Al {...) is the expectation in 
space {Q, F, P). The vector s* is given by 

s* = S M ix’ iv, &cl 1 (rl, 4) P (drl) (2.6) 
v.. 01 

where X [t, zl is the fundamental matrix of solutions of the differential equation dxidt = 
A (t) x; the prime denotes transposition. The random vector function s (t, 0) is given by 

S(Tv(“)=M{ \ X’lrl,T]l(rl,w)y(dT)I51,.t..,jj} 
[r.'Bl 

7j-G T<iTj+l,y j= I,..., k 

(2.7) 

where M {... 1 b, . . ., Ej) is the conditional expectation with respect to El,..., Ej. By Rg we 
denote the set of (n + I)-dimensional random vector functions 

r (a) = {r (r, 0) = {rl t-c, a), . . ., r, (T, 0); rrr+l (0)) = 
{w b, ~0); rn+l (o-9), t, < 7 < 6. w E 52) 

constrained by the condition 

S 06, w(% 4)~@4 + m+l(4 d B v.. 61 
for almost all oE3. 

3. Approximation of the optimal guaranteed result. We introduce the vector 
function 



We put 

On substituting (3.2) for ~(T,o) into (2.3)-(2.7) and using (3.1), we obtain 

supAe(t*,z*,A, &= 13.3) 

Here, by (2.41, the norm /m[.]I1 is given by 

The functional <.s* (t*, m [.1)*x*> is linear with respect to mf.1. The functional x* (t*, 
rnf.1, 0) is concave in rn[sj. This important fact, which follows from the stochastic nature 
of the function I(.), is proved by arguments similar to those in /l, pp.311-314/. 

Let 

a*= max maxIA(t 
t&S* Ixl=l 

We consider in space {z} the domain 

h'tt,, s*, &) = (2: ( W - X* f ’ f Z,P? < CC* (b,, E,) 

(cr (2, a) = (8 + e exp 2h* (T - to))“z) 

We construct the quantity 

(3.51 

Since s,(t,, m!-1) is linear, and x*(t,,mI.j, fi) is concave, with respect to ?n[.l, and 
<s,(E*, m[.])-w> is linear with respect to w, the operations of min with respect to z = (w,z~~I} 
and of max with respect to rni.1 in (3.5) can be interchanged. We thus obtain the equation 

The maximized quantity is concave with respect to m [+I and strictly concave with 
respect to S* (t*, m i-1). For fixed t,, x*, s, and B, therefore, the vector so @,,r,, 8, @) = 
se (L m” [.I), corresponding to a maximizing function rn"f.1, is uniquely defined. We define 

B @*+r*, s) as the upper limit 

B @*, s*, 8) = sup BP B.E B @*, x*1 6) (3.17) 

where the set B(&,s*, E) is given by the condition 

B (t*, J*, E) = {B: p (t*, 5** a, B) > BI (3.8) 

We can seek 8 (t,,s,, ef as the least root of the equation p (&,r,,s, fi) = 6. 
Considerthe function 

p* (t,, w, s*, E) = P (t*, WV a, B (t*, x*1 s)) (3.9) 

With fixed t,,x,, and E it has the gradient grad,@@,, wr+ E), which is continuous 
with respect to w and satisfies the equation 

grad rap* (tz+, w, 5, s) = so (t*, w, a, B (&, x*r 8)) (3.10) 

These assertions, may be proved by starting from (3.61-(3-g) and using the uniqueness 
of the vector so (t*, w, s, fi (t*, I*, s)). 

Denote by Z" (t,, +, e) the accompanying point /1, p.209/, at which p"(t,,w)+z,+l reaches 
its minimum in the domain a@,, x*,E). From (2.1) and (2.2) and the above working, it may be 
seen that the (12 + 1)-dimensional vector 

p" @*, r*, s) = Is*, 0) - so It** %t s) (3.11) 

which connects the points zO(t*,.rX,~) and {z,, 0}, is connected witi the vector So (t*, %, s, 

B (t*? x** a)) by the equation 

p0 ft*. x*, Ef = 05 ft*, 4 {so @i, q+l, G B @*, =*, e)), 1) x (1 + Is” ttr, x*7 8% B ft*, %I¶ a i-Y’* (3.22) 



699 

The optimal control u"(t,,x[t~~,e) can be formed according to the law U of (l-3), which 
/l, p-231/ denotes extremal shiftto the accompanying point z"(ti,x[t~l,e). In view of (3.12), 
this amounts to extremal shift in opposition tothevector 

any 
the 
the 

{so (tt, x Iti], ~9 fJ (tt! X [trl, E)), I} = {[grad, Q* (ti, W, x Itil, e)l,=xfq, I} 

We thus arrive at the following conclusion. 
The optimal min-max strategy, which gives the minimum guaranteed result ~'(t,,x,) for 
initial position {t,,s,}EG, can be constructed as the function u'(t,x,e), which satisfies 
condition of extremal shift opposite to the vector ([grad&* (t, w,x, ~)l~_~,l}, i.e., from 
condition 

(3.13) 

4. Notes. In many specific problems it is possible to find the maximizing division 
A {rj"}, by which the upper bound with respect to A is reached in (3.3). The construction of 
the function p*(t,u~,z,e) or of its required gradient [grad,p+(t,w,z,@f,, is then simplified. 
If the division A {z~;"}, on which the upper bound is reached in (3.3), is not discovered, then, 
when constructing in practice the optimal control signals u"(ti] = a0 (ti. 2 It& E), there is no need 
to take evaluation of the function p*(t, w,r,~) as far as evaluation of this upper bound with 
respect to A. We can confine ourselves to choosing a division A(T;*) with a sufficiently smal 
step pi+, - z,* < 6, because it can be shown that every sequence of divisions A#)] (k=l, Z,...) 

with step 62 0 as k-m is maximizing for problem (3.3). Also, the upper limit with 
respect to fl in (3.7), (3.8) may be computed approximately. 

The above procedure for evaluating the control signal $(tt] can often be greatly 
simplified by 
suitable norm 

selecting a suitable norm ]iZ(.)[ for the function a(.) and accordingly, a 
for the function m f.1. For instance, if 

vraimax, [ s 5 tG w b. 4) P w -t I rn+l (0) 1 1 
It”, 61 

signifies the norm in space R of random vector functions T(Z, 0) = (u, (7, 0). ~~~1 (w)), the constraint 
on I(.) in the maximization problem with respect to 1(.) is determined by the norm, conjugate 
to the norm in R. This can prove convenient also, because in this case the quantity p can 
disappear from the working altogether. Then, the function p* (t,w,=,e)is likewise simplified, 
since its third argument x can disappear. In general, elimination of 6 from the working 
can be conveniently achieved in many cases when the function oft,=) is homogeneous with 
respect to Z. The constraint on E(.) in the maximization problem can then be conveniently 
chosen as a constraint on a suitable conjugate functional of 1(.).. 

This procedure is also convenient in cases when x (t,u,v)=O. The introduction of the 
supplementary coordinate z,,+~ regularizes the problem. After permuting the min and max 
operations in (3.5), (3.6), the resolving vector so (t,.,w,z *,e,@ on the right-hand side of 
(3.10) is unique. This determines the differentiability of p* (t_w,t.,e) of (3.91 with respect 
to w and gives Eqs.(3.10). 

It must be emphasized that the definition of the optimal max-min counter-strategy 
v" (t, 2, a, E) from the condition of extremal shift along the vector {fgrad,p*(t,lu,+,&)],=~,l} is not 

in general well-posed, if the cost Q"(t,s) of the differential game is not differentiable 
with respect to X. In such cases the optimal counter-actions I?[$]= u"(t;,z[ti],~It).e) can be 
constructed on the basis of the optimal max-min unanticipated stochastic programs, which.are 
extracted from the solution of the problem on evaluating the ,programmed extremum e(e) 11, 
p.420/. 

Finally, notice the connection of the method of stochastic synthesis with the construction 
of convex hulls for the functions or functionals figuring in Sect.3. This connection enables 
us to organize procedures for computing x*, based on a recurrence construction of these 
convex hulls of functionals. In some cases such procedures work effectively. In general, 
however, they cannot be considered effective, since the construction of the convex hulls of 
functionals or functions present a difficult problem in pract+ze. 
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ON THE RELATIVISTIC THEORY OF ROCKET FLIGHT* 

L.I. SEDOV 

It is shown by macroscopic analysis that, when the entire mass of a rocket 

is consumed for creating thrust, objects may be obtained as a result 

having energy but zero mass, moving the velocity of light. It is shown 
that the boost process of such massless objects can be realized in 

finite time from the observer's point of view. The vast stellar 
luminosity of quasars and certain jet motions observed in remote space 

can be explained by the production of massless radiation with internal 

motions connected with the separation of large energies inside the stars. 

A number of publications have dealt with rocket motions in the context of relativistic 

effects. One of the first was by Ackeret /l/, then there was Sanger's /2/, while other 

authors largely took these as a basis for their first principles. It should be mentioned 

that some authors have sometimes used super-light relative velocities of the rejected masses, 

which is not admissible. 
Sanger gave a detailed theory of inhabited relativistic rockets with equipages in board, 

allowing for the arrival at the rocket of opposed cosmic masses, used as energy sources in 

reactive motors of the stright-through type. 
Below we study limit relations for the motions of uninhabited rockets, 

t B A when their consumed rest mass tends to zero. 

B' u 
M 

u' 

" MI 

k 

A typical feature of rocket motion is connected with the rejection of 
mass belonging to them and the consequent creation of thrust, so that 
start and boost of the rocket can be realized with a considerable increase 

in their flight velocity relative to a fixed observer. 

In Fig.1 we show schematically the world line of the rocket in the 

Cartesian inertial system of observer's reading zt. An arbitrary rocket 

M" 
position is denoted by M; M”B”, M’B’. and MB are elements of the world 

lines for the rejected infinitesimal masses 1 bnk 1 by means of the rocket 

motors, and IQ.' is their initial four-dimensional velocity (the gas flow 

velocity from the motor nozzles). In general it is natural to assume that 

_A 
the further motion of the rejected masses along world lines MB cannot 

0 
affect the motion of rocket M, though the properties of the initial vector 

"8, 
I are extremely important. 

Fig.1 


